213
Magnetoreception in Plants
Nießner, C., Denzau, S., Peichl, L., Wiltschko, W., and Wiltschko, R. (2014). Magnetoreception in birds:
I. Immunohistochemical studies concerning the cryptochrome cycle. J Exp Biol 217(Pt 23), 4221–
4224. doi: 10.1242/jeb.110965.
Occhipinti, A., De Santis, A., and Mafei, M.E. (2014). Magnetoreception: An unavoidable step for plant
evolution? Trends Plant Sci 19(1), 1–4. doi: 10.1016/j.tplants.2013.10.007.
Paponov, I.A., Fliegmann, J., Narayana, R., and Mafei, M.E. (2021). Diferential root and shoot magne
toresponses in Arabidopsis thaliana. Sci Rep 11(1), 9195. doi: 10.1038/s41598-021-88695-6.
Paul, A.-L., Ferl, R.J., and Meisel, M.W. (2006). High magnetic feld induced changes of gene expression
in Arabidopsis. BioMagn Res Technol 4(1), 7. doi: 10.1186/1477-044X-4-7.
Penuelas, J., Llusia, J., Martinez, B., and Fontcuberta, J. (2004). Diamagnetic susceptibility and root
growth responses to magnetic felds in Lens culinaris, Glycine soja, and Triticum aestivum.
Electromagn Biol Med 23(2), 97–112.
Pooam, M., Arthaut, L.D., Burdick, D., Link, J., Martino, C.F., and Ahmad, M. (2019). Magnetic sensitiv
ity mediated by the Arabidopsis blue-light receptor cryptochrome occurs during favin reoxida
tion in the dark. Planta 249(2), 319–332. doi: 10.1007/s00425-018-3002-y.
Pooam, M., El-Esawi, M., Aguida, B., and Ahmad, M. (2020a). Arabidopsis cryptochrome and Quantum
biology: New insights for plant science and crop improvement. J Plant Biochem Biotechnol 29(4),
636–651. doi: 10.1007/s13562-020-00620-6.
Pooam, M., Jourdan, N., El Esawi, M., Sherrard, R.M., and Ahmad, M. (2020b). HEK293 cell response
to static magnetic felds via the radical pair mechanism may explain therapeutic efects of pulsed
electromagnetic felds. PLoS One 15(12), e0243038-e0243038. doi: 10.1371/journal.pone.0243038.
Procopio, M., Link, J., Engle, D., Witczak, J., Ritz, T., and Ahmad, M. (2016). Kinetic modeling of the
Arabidopsis Cryptochrome Photocycle: FADH accumulation correlates with biological activity.
Front Plant Sci 7. doi: 10.3389/fpls.2016.00888.
Radhakrishnan, R. (2019). Magnetic feld regulates plant functions, growth and enhances toler
ance against environmental stresses. Physiol Mol Biol Plants 25(5), 1107–1119. doi: 10.1007/
s12298-019-00699-9.
Rakosy-Tican, L., Aurori, C.M., and Morariu, V.V. (2005). Infuence of near null magnetic feld on in
vitro growth of potato and wild Solanum species. Bioelectromagnetics 26(7), 548–557.
Rosen, A.D. (2003). Mechanism of action of moderate-intensity static magnetic felds on biological sys
tems. Cell Biochem Biophys 39(2), 163–173. doi: 10.1385/cbb:39:2:163.
Sakaguchi, Y., Hayashi, H., and Nagakura, S. (1980). Classifcation of the external magnetic feld efects
on the photodecomposition reaction of dibenzoyl peroxide. Bull Chem Soc Jpn 53(1), 39–42. doi:
10.1246/bcsj.53.39.
Sear, R.P. (2019). Difusiophoresis in cells: A general nonequilibrium, nonmotor mechanism for the
metabolism-dependent transport of particles in cells. Phys Rev Lett 122(12), 128101. doi: 10.1103/
PhysRevLett.122.128101.
Solov’yov, I.A., Chandler, D.E., and Schulten, K. (2007). Magnetic feld efects in Arabidopsis thaliana
cryptochrome-1. Biophys J 92(8), 2711–2726.
Song, Y.H., Estrada, D.A., Johnson, R.S., Kim, S.K., Lee, S.Y., MacCoss, M.J., et al. (2014). Distinct roles
of FKF1, GIGANTEA, and ZEITLUPE proteins in the regulation of CONSTANS stability in
Arabidopsis photoperiodic fowering. Proc Natl Acad Sci U S A 111(49), 17672–17677. doi: 10.1073/
pnas.1415375111.
Spanudakis, E., and Jackson, S. (2014). Te role of microRNAs in the control of fowering time. J Exper
Bot 65(2), 365–380. doi: 10.1093/jxb/ert453.
Steiner, U.E., and Ulrich, T. (1989). Magnetic feld efects in chemical kinetics and related phenomena.
Chem Rev 89(1), 51–147. doi: 10.1021/cr00091a003.
Svendsen, J.A., and Waskaas, M. (2020). Mathematical modelling of mass transfer of paramagnetic ions
through an inert membrane by the transient magnetic concentration gradient force. Phys Fluids
32(1), 013606. doi: 10.1063/1.5130946.